Synthesis of some new pyrazolo[1,5-*a*]pyrimidines Sayed A. Ahmed^a, Abdou O. Abdelhamid^{b*}, Ahmed H. H. El-Ghandour^a, Mahmoud A. Mohamed^c and Basant M. Mohamed^a

^aDepartment of Chemistry, Faculty of Science, Beni-Suef University, Egypt ^bDepartment of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt ^cDepartment of Textile, Faculty of Industrial Education, Beni-Suef University, Egypt

Pyrazolo[1,5-*a*]pyrimidines were synthesised from the the reaction of β -diketone, β -keto ester, 1,2-disubstituted acrylonitrile or sodium (3-oxocycloalkylidene) methenolate. Elemental analysis, spectral data and alternative synthesis route elucidated structures of the newly synthesised compounds.

Keywords: pyrazolo[1,5-a]pyrimidines

The importance of uracil and its annelated derivatives is well recognised by synthetic¹⁻⁶ as well as biological⁷⁻¹² chemists. Pyrazolo[3,4-*d*]pyrimidines constitute a class of naturally occurring fused uracils that possess diverse biological activities.¹³ Also, purines are widely used in the CNS stimulation *in vivo*,¹⁴⁻³⁰ antagonists, antiviral, antibacterial³¹ and in the treatment of gout.³²

Results and discussion

Treatment of 4-(1,3-benzothiazol-2-yl)-3-(methylthio)-1*H*-pyrazol-5-amine (**1a**) with pentane-2,4-dione in boiling acetic acid under reflux afforded 3-(1,3-benzothiazol-2-yl)-5,7-dimethyl-2-(methylthio)pyrazolo[1,5-*a*]pyrimidine (**2a**) (Scheme 1). The structure of **2a** was established by elemental analysis and spectral data. Thus, IR (cm⁻¹) spectrum of **2a** revealed bands at 1617 (C=N) and 1594 (C=C). Its mass spectrum showed peaks at *m*/*z* = 328 [M⁺ + 2, 18.7%], 327 [M⁺ + 1, 33.3%], 326 [M⁺, 100.0%], 279 [M⁺-SCH₃, 51.6%], 199 [M⁺-C₅H₇N, 14.6%], 146 [5.9%], 108 [35.21%]. Similarly, pentane-2,4-dione reacted with **1b–d** in boiling acetic acid to give pyrazolo[1,5-*a*]pyrimidine derivatives **2b–d**, respectively (Scheme 1).

Analogously, **1a** reacted with 1-phenylbutan-1,3-dione in boiling acetic acid afforded product seemed to be 3-(1,3-benzothiazo1-2-y1)-7-methyl-2-(methylthio)-5-phenyl-pyrazolo[1,5-*a*]pyrimidine **3a** or the isomer 3-(1,3-benzothiazol-2-yl)-5-methyl-2-(methylthio)-7-phenylpyrazolo[1,5-*a*]pyrimidine **4a** (Scheme 2). The structure of the product was elucidated by elemental analysis, spectral data and MO calculations.

Scheme 1

Thus, ¹H NMR spectrum of compound **3a** showed signals at $\delta = 2.68$ (s, 3H, CH₃), 2.77 (s, 3H, SCH₃), 6.87 (s, 1H, pyrimidine H-5), 7.23–8.14 (m, 9H, ArHs). Structure **4a** was ruled out on the basis of MO calculation using Hyper-Chem (semi-empirical method AM1) (Scheme 2).

Also, treatment of ethyl 3-oxobutanoate with 1a in boiling acetic acid gave one isolable product which according to TLC seemed to be 7-methyl-2-methylthio-5-oxo-3-(1,3benzothiazol-2-yl)pyrazolo[1,5-*a*]pyrimidine 5a or 5-methyl-2-methylthio-7-oxo-3-(1,3-benzothiazol-2-yl) pyrazolo[1,5-*a*] pyrimidine 6a (Scheme 3). The structure of the product was confirmed by elemental analysis, spectral data, alternative synthesis method and MO calculation. Thus, the IR (cm⁻¹) spectrum of compound 5a revealed bands at 3247 (NH), 1683(CO), 1619 (C=N) and 1577 (C=C). The ¹H NMR

Scheme 2

^{*} Correspondent. E-mail: abdelhamid45@gmail.com

Scheme 3

spectrum of compound **5a** showed signals at $\delta = 2.49$ (s, 3H, CH₃), 2.82 (s, 3H, SCH₃), 5.82 (s, 1H, pyrimidine C-5), 7.36 (s, 1H, NH) and 7.38-7.95 (m, 4H, ArHs). Structure 6a was rejected by MO calculations data using Hyper-Chem (semiempirical method AM1) (Scheme 3).

From the foregoing result the reaction occurred via the intermediate 7a by elimination of ethanol. The latter was readily cyclised to give 5a via elimination of one molecule of water (Scheme 3). Thus, treatment of 1a with acetoacetanilide in boiling acetic acid afforded a product identical in all aspects (m.p., mixed m.p. and spectra) with 5a. Similarly, treatment of **1b-d** with ethyl 3-oxobutanoate (or acetoacetanilide) in boiling acetic acid gave pyrazolo[1,5-a] pyrimidines 5b-d, respectively.

Also, treatment of 1a with α -cyanocinnamonitrile in boiling ethanol under reflux afforded 7-amino-3-(1.3-benzothiazol-2-yl)-2-(methylthio)-5-phenylpyrazolo-[1,5-a]pyrimidine-6carbonitrile (11a) (Scheme 4).

Structure 11a was elucidated by elemental analysis, spectral data and alternative synthesis method. Thus, IR revealed bands at 3455, 3306 (NH₂); 2187 (CN) and 1603 (C=C). ¹H NMR showed signals at $\delta = 2.68$ (s, 3H, SCH₃); 5.46 (s, 2H, NH₂) and 7.21-8.34 (m, 9H, ArHs). Also, compound 12a, which prepared via reaction of 1a with benzaldehyde in sodium ethoxide solution, reacted with malononitrile in ethanol containing catalytically amount of piperidine to give product identical in all aspects (m.p., mixed m.p. and spectra) with 11a.

The reaction seemed to proceed through Michael addition between 1a and benzylidenemalononitrile to give intermediate 10a which underwent cyclisation via addition of NH hydrogen to the nitrile function followed by autoxidation to give the final product 11a. Also, treatment of the appropriate arylidenemalononitrile with the appropriate **1a-d** in ethanol and catalytically amount of piperidine to give 11b-j.

(1,9-12)a, X = 1,3-benzothiazol-2-yl, Y = methylthio, Ar =C_6H_5 (1,9-12)b, X = 1,3-benzothiazol-2-yl, Y = phenylamino, Ar =C_6H_5 (1,9-12)c, X = 1,3-benzoimidazol-2-yl, Y = phenylamino, A r=C_6H_5 (1,9-12)d, X = cyano, Y =phenylamino, Ar = C_6H_5 (1,9-12)e, X = cyano, Y = methylthio, Ar = C_6H_5

(1,9-12)f, X = 1,3-benzothiazol-2-yl, Y = methylthio, Ar =4-CH₃C₆H₄ (1,9-12)g, X = 1,3-benzothiazol-2-yl, Y = phenylamino, Ar =4-CH₃C₆H₅ (1,9-12)h, X = 1,3-benzoimidazol-2-yl, Y = phenylamino, A r=4-CH₃C₆H₅ (1,9-12)i, X = cyano, Y =phenylamino, Ar =4-CH₃C₆H₄ (1,9-12)j, X = cyano, Y = methylthiol, Ar = 4-CH₃C₆H₄

Scheme 4

Compd. no.	Mp./°C solvent	Colour Yield/%	Mol. formula (M.Wt.)	Calcd./Found%			
				С	Н	Ν	S
2a	249	Yellow	C ₁₆ H ₁₄ N ₄ S ₂	58.87	4.32	17.16	19.64
26	Dioxan	89 Bala vallow	326.44	58.95	4.40	17.22	19.70
20	Dioxan	85	371.47	67.95	4.61	18.79	8.72
2c	243	Pale yellow	C ₂₁ H ₁₈ N ₆	71.17	5.12	23.71	
	Dioxan	85	354.42	71.25	5.05	23.62	-
20	200 Dioxan	87	263 30	68 65	4.98 5.15	26.00	_
3a	239	Pale yellow	$C_{21}H_{16}N_4S_2$	64.92	4.15	14.42	16.51
	Dioxan	95	388.52	64.70	4.02	14.25	16.75
3b	203	Yellow	C ₂₆ H ₁₉ N ₅ S	72.03	4.42	16.15	7.40
30	219	Yellow	433.54 CacHaoNa	72.33	4.35	20.18	7.50
	dil.AcOH	84	416.9	75.20	4.75	20.06	_
3d	237	Yellow	$C_{20}H_{15}N_5$	73.83	4.65	21.52	
Ea	Dioxan	96 Dala vallavy	325.38	74.01	4.54	21.76	-
ba	259 Dioxan	88	328 42	54.80 55.01	3.08	17.06	19.53
5b	>300	Pale yellow	C ₂₀ H ₁₅ N ₅ OS	64.33	4.05	18.75	8.59
_	DMF	82	373.44	64.13	4.31	18.52	8.73
5c	>300 DME	White	C ₂₀ H ₁₆ N ₆ O	67.40	4.53	23.58	
5d	>300	os White	550.59 C14H11N⊧O	63.39	4.18	25.30	_
Ju	DMF	89	265.28	63.25	4.39	26.19	-
11a	>300	Yellow	$C_{21}H_{14}N_6S_2$	60.85	3.40	20.27	15.47
	Dioxan	92	414.51	60.39	3.68	20.51	15.31
110	>300 Dioxan	Yellow 95	C ₂₆ H ₁₇ N ₇ S 459 54	67.96	3.73	21.34 21.54	6.98 6.71
11c	>300	Yellow	$C_{26}H_{18}N_8$	70.58	4.10	25.32	0.71
	Dioxan	98	442.49	70.41	4.40	25.45	-
11d	>300	Pale yellow	C ₂₀ H ₁₃ N ₇	68.37	3.73	27.90	
11e	275	87 Pale vellow	351.37 CarHaoNoS	58 81	4.00	27.73	_ 10_47
11f	EtOH	97	306.35	59.00	3.40	27.55	10.70
	>300	Yellow	C ₂₂ H ₁₆ N ₆ S ₂	61.66	3.76	19.61	14.96
11~	Dioxan	83 Vallow	428 C H N S	61.43	3.91	19.69	15.27
iig	Dioxan	91	473.54	68.40	4.04	20.70	6.95
11h	>300	Yellow	C ₂₇ H ₂₀ N ₈	71.04	4.42	24.55	0.00
	Dioxan	90	456.51	70.83	4.54	24.72	-
11i	>300 Diaxan	Pale yellow	C ₂₁ H ₁₅ N ₇	69.03	4.14	26.83	
11i	>300	Pale vellow	505.40 C1eH19NeS	59.98	3.78	26.23	10.01
,	AcOH	89	320.38	59.68	3.90	26.45	9.85
16a	240	Yellow	C ₁₇ H ₁₄ N ₄ S ₂	60.33	4.17	16.55	18.95
	EtOH 240	75 Palo vollow	338.46 C H N S	60.35	4.15	16.56	18.97
100	EtOH	65	352.48	61.35	4.56	15.90	18.20
16c	203	Yellow	C ₂₀ H ₂₀ N ₄ S ₂	63.13	5.30	14.72	16.85
	EtOH	65	380.54	63.15	5.28	14.71	16.60
16d 16e	>300 EtOH	Yellow	C ₂₂ H ₁₇ N ₅ S 383 48	68.91 68.92	4.47	18.26	8.36
	285	Yellow	C ₂₃ H ₁₉ N ₅ S	69.50	4.82	17.62	8.07
	EtOH	80	397.51	69.53	4.85	17.60	8.05
16f	225	Yellow	C ₂₅ H ₂₃ N ₅ S	70.56	5.45	16.46	7.54
	270	70 Vellow	425.56 CasHasNa	70.57	5.47 4.95	16.45	7.52
iog	Dioxan	78	366.43	72.13	4.93	22.95	_
16h	375	Yellow	C ₂₃ H ₂₀ N ₆	72.61	5.30	22.09	
16i	EtOH	70 Vallow	380.46	72.63	5.32	22.10	-
	Z33 FtOH	65	408 51	73.51	5.92 5.95	20.57	_
16j	>300	Yellow	$C_{16}H_{13}N_5$	69.80	4.76	25.44	
	Dioxan	80	275.32	69.83	4.75	25.42	-
16k	215 EtOH	Yellow	C ₁₇ H ₁₅ N ₅	70.57	5.23	24.21	
16	215	75 White	203.34 C10H10N-	70.56	5.∠5 6.03	24.20 22.07	-
	Dioxan	65	317.40	71.93	6.02	22.07	_
16m	160	White	$C_{11}H_{10}N_4S$	57.37	4.38	24.33	13.92
40-	EtOH	85	230.29	57.32	4.40	24.23	14.00
10[]	120 FtΩH	vvnite 75	C ₁₂ Π ₁₂ Ν ₄ S 244 32	58.99 58.70	4.95 4.98	22.93 20.60	13.12
160	115	White	$C_{14}H_{16}N_4S$	61.74	5.92	20.57	11.77
	Dioxan	70	272.37	61.70	5.98	20.60	11.80

Finally, treatment of sodium (2-oxocycloalkylidine) methanolate **14** with the appropriate 3-aminopyrazoles **1a,b,d,e** in the presence of piperidine acetate and acetic acid afforded pyrazolo[1,5-*a*]pyrimidines **16a–o** (Scheme **5**).

The structure of the product **16a** was confirmed by elemental analysis and spectral data. Thus, IR spectroscopy revealed bands at 1685 (C=N) and 1380 (CH₃). Its mass spectrum showed peaks at m/z = 340 [M⁺⁺², 28.4%], 339 [M⁺¹, 46.4%], 338 [M⁺, 100.0%], 305 [M⁺-SH, 72.5%], 199 [17.3%], 148 [5.9%].

 Table 2
 Spectra of some selected synthesised compounds

The reaction seemed to be *via* the initial nucleophilic attack by the exocyclic amino group at the carbonyl group, which formed *in situ* from **13a** with water, followed by cyclisation and elimination of one molecule of water leading to the formation of the product **16a** (Scheme 5). The suggestion of the formation of the alternative isomeric product **18a** is based on the initial attack of endocyclic amino group at the formyl group. The latter suggestion is excluded due to the higher nucleophilicity of the exocyclic primary amino group than the endocyclic amino group and our previously report.³³

Comp. no.	Spectral data
2b	IR: 3067, 2960 (CH),1617 (C=N), 1594 (C=C) and 1370 (CH ₃). ¹ H NMR: 2.60 (s, 3H, CH ₃); 2.71 (s, 3H, CH ₃); 6.48 (s, 1H, pyrimidina H-5); 7.02–8.00 (m, 9H, ArHs); 10.2 (s, 1H, NH)
2c	IR (cm ⁻¹): 3384, 3281 (NHs) and 1596 (C=C). ¹ H NMR: insoluble Ms: 355 [M ⁺ + 1, 24.7%]; 354 [M ⁺ , 100%] and 312 [M ⁺ -C ₂ H ₄ N, 14.2%]
2d	IR (cm ⁻¹): 3320 (NH); 2211 (C=N); and 1605 (C=C). ¹ H NMR: 2.72 (s, 3H, CH ₃); 2.86 (s, 3H, CH ₃); 6.77 (s, 1H, pyrimidine H-5); $7.14-7.74$ (m 5H, ArHs) and 7.76 (s, 1H, NH)
3b	IR: 3267 (NH) and 1599 (C=C). ¹ H NMR: 2.74 (s, 3H, CH ₃); 6.80 (s, 1H, pyrimidine C-5); 7.27–8.18 (m, 14H, ArHs) and 10.30 (s, 1H, NH)
3c	IR: 3295 (NHs) and 1600 (C=C). ¹ H NMR: insoluble MS: 417 [M⁺ + 1, 92.2%], 416 [M⁺, 100.0%], 374 [M⁺–C ₂ H ₄ N, 51.7%]. 298 [17.8%]. 208 [65.5%].
3d	IR: 3316 (NH); 2219 ((C≡N)) and 1601 (C=C). ¹ H NMR: 2.68 (s, 3H, CH ₃); 6.80 (s, 1H, pyrimidineH-5); 6.88–8.08 (m, 10H, ArHs) and 8.20 (s, 1H, NH).
5b	IR: 3425, 3259 (NHs); 1669 (CO); 1628 (C=N) and 1602 (C=C). ¹ H NMR: insoluble MS: 373 [M⁺, 100.0%], 340 [M⁺–CH₅O, 12.8%]. 173 [11.8%]. 77 [19.8%].
5c	IR: 3239, 3146, 3082 (NHs); 1666 (CO); 1601(C=N) and 1562 (C=C). ¹ H NMR: 2.42 (s, 3H, CH ₃); 5.76 (s, 1H, pyrimidine H-5); 6.90–7.68 (m, 9H, ArHs): 7.76 (s, br., 1H, NH) 7.79 (s, br., 1H, NH) and 10.34 (s, 1H, NH).
5d	IR: 3411, 3297(NHs); 1669 (CO); 1624 (C=N) and 1597 (C=C). ¹ H NMR: 2.30 (s, 3H, CH ₃); 5.79 (s, 1H, pyrimidine H-5); 6.89– 7.76 (m, 5H, ArHs); 9.18 (s, 1H, NH) and 13.05 (s, br., 1H, NH).
11b 11c	IR: 3434, 3302, 3233 (NH, NH ₂); 2213 (CN); 1620 (C=N) and 1594 (C=C). ¹ H NMR: insoluble IR: 3440, 3377, 3301 (NH, NH ₂); 2208 (CN): 1628 (C=N) and 1596 (C=C). ¹ H NMR): 6.99–8.07 (m, 14H, ArHs); 8.88 (s, 2H,
11d	NH ₂); 10.57 (s, 1H, NH) and 11.65 (s, 1H, NH). IR: 3445, 3376, 3312 (NH, NH ₂); 2216, 2187 (CNs); 1663 (C=N) and 1604 (C=C). ¹ H NMR: 6.97–7.96 (m, 10H, ArHs); 8.99
11e	(s, 2H, NH ₂) and 9.49 (s, 1H, NH). IR: 3372, 3302 (NH ₂); 2219 (CN); 1644 (C=N) and 1599 (C=C). ¹ H NMR: 2.76 (s, 3H, SCH ₂) 7.60–7.80 (m, 5H, ArHs) and 9.28
11f	(s, 2H, NH ₂). IR: 3290, 3230 (NH, NH ₂): 2210 (CN): and 1595 (C=C). ¹ H NMR: insoluble MS: [M ⁺ + 2, 28,4%], 429 [M ⁺ + 1, 46,4%], 428 [M ⁺ ,
11a	45.6%], 382 [M ⁺ -CH ₃ SH, 19.6%], 339 [M ⁺ -(CH ₃ SH + CN ₂ H ₃)100.0%], 292 [57.6%] and 200 [13.3%]. IR: 3445, 3297, 3236 (NH, NH ₃): 2211 (CN): and 1592 (C=C), ¹ H NMR: insoluble
11h 11i	IR: 3406, 3317, 3178 (NH, NH2); 2218 (CN); 1635 (C=N) and 1600 (C=C). IR: 3450, 3369, 3312 (NH, NH2); 2187, 2216(CNs) and 1601(C=C). ¹ H NMB: 2,49 (s. 3H, CH2) 6,95–7,95 (m. 9H, ArHs): 8,95
11i	(s, 2H, NH ₂) and 9.45 (s, 1H, NH). IB: 3374, 3301 (NH ₂): 2219 (CNs): 1646 (C=N) and 1592 (C=C). ¹ H NMB: 2.40 (s, 3H, CH ₂): 2.75 (s, 3H, SCH ₂): 7.34–7.77
16b	(m, 4H, ArHs) and 9.12 (s, 2H, NH ₂). IB: 1420.3 (CH ₂), MS: 354 [M ⁺ + 2, 11.7%], 353 [M ⁺ + 1, 24.1%], 352 [M ⁺ , 100.0%], 319 [M ⁺ -SH, 66.7%], ¹ H NMB: 1.6 (t, 2H,
16c	CH ₂); 2.0 (m, 2H, CH); 2.5 (s, 3H, CH ₃); 2.8 (t, 2H, CH ₂); 3.2 (m, 2H, CH ₂); 7.2–8.2 (m, 5H, ArHs); 8.4 (s, 1H, pyrimidine H-4). IB: 1422 (CH ₂): ¹ H NMB: 1.4 (m, 4H, 2CH ₃): 1.8 (m, 2H, CH ₂): 2.0 (m, 2H, CH ₂): 7.2–8.2 (m, 5H, ArHs); 8.4 (s, 1H, pyrimidine H-4).
16d	CH ₂); 7.2–8.2 (m, 5H, ArHs); 8.4 (s, 1H, pyrimidine H-4). IB: 3379 1(NH), ¹ H NMB: 2.0 (t. 2H, CH ₂): 2.3 (m, 2H, CH ₂): 2.7 (t. 2H, CH ₂): 6.6–8.2 (m, 10H, ArHs): 10.25 (s. 1H, NH): 8.5
16e	(s, 1H, pyrimidine H-4). IB: 3278.8 (NH) ¹ H NMR: 1.9 (m. 2H, CH_): 2.8 (m. 2H, CH_): 3.3 (t. 4H, 2CH_): 7.0–8.2 (m. 10H, ArHs): 8.9 (s. 1H, pyrimidine
16f	C-H); 10.2 (s, 1H, NH). [B: 3268 (NH) ¹ H NMB: 1.5 (m, 2H, CH ₂): 1.8 (m, 2H, CH ₂): 2.1 (m, 2H, CH ₂): 2.8 (m, 2H, CH ₂): 3.1 (t, 2H, CH ₂): 3.4 (t, 2H)
16a	CH ₂); 6.9–8.1 (m, 10H, ArHs); 8.4 (s, 1H, pyrimidine H-4); 10.3 (s, 1H, NH). B: 3278 8, 3371 3 (NH) MS: 367 [M+ + 1, 25 6%] 366 [M+ 100 0%] 324 [M+C.H., 11 0%] 183 [15 0%] ¹ H NMB: 2.3 (m, 2H)
16b	CH ₂); 3.1 (t, 2H, CH ₂); 3.4 (t, 2H, CH ₂); 7.0–8.0 (m, 10H, ArHs); 8.4 (s, 1H, pyrimidine H-4); 9.9 (s, 1H, NH); 10.5 (s, 1H, NH). B: 32865, 3370, 1 (NH), 1H, NMB: 1.9 (m, 4H, 2CH); 2.7 (t, 2H, CH); 2.9 (t, 2H, CH); 6.6 – 7.9 (m, 10H, ArHs); 8.1 (s, 1H, NH).
16:	pyrimidine C-H); 9.8 (s, 1H, NH); 10.3 (s, 1H, NH): $[P_{2}, 2, 2]$ (1, 2H, CH ₂); 2.5 (t, 2H, CH ₂); 0.5 – 7.5 (H, 10H, AHS); 0.1 (s, H, P); 0.1 (s, H, P); 0.2 (s, 2H, P); 0.1 (s, H, P); 0.2 (s, 2H, P)
16:	CH ₂); 2.8 (t, 2H, CH ₂); 3.4 (t, 2H, CH ₂); 6.9–8.0 (m, 10H, ArHs); 8.2 (s, 1H, pyrimidine H-4); 9.8 (s, 1H, NH); 10.5 (s, H, NH).
10	(t, 2H, CH ₂); 3.1 (t, 2H, CH ₂); 3.3 (t, 2H, CH ₂); 6.9–7.9 (m, 5H, ArHs); 8.6 (s, 1H, pyrimidine H-4); 9.5 (s, 1H, NH).
106	CH ₂); 2.9 (t, 2H, CH ₂); 6.9–7.8 (m, 5H, ArHs); 8.9 (s, 1H, pyrimidine H-4); 9.4 (s, 1H, NH). CH ₂); 2.9 (t, 2H, CH ₂); 6.9–7.8 (m, 5H, ArHs); 8.9 (s, 1H, pyrimidine H-4); 9.4 (s, 1H, NH).
101	(m, 22 13.6 (CN); 332 1.7 (NH). MS: 317 [M ⁺ , 100.0%], 274 [M ⁺ - $_{3}$ H ₇ , 14.7%], 65 [14.7%]. ^{(h} MMH: 1.3 (m, 2H, CH ₂); 1.6 (m, 4H, 2CH ₂); 2.8 (m, 2H, CH ₂); 3 (t, 2H, CH ₂); 3.4 (t, 2H, CH ₂); 6.6–7.7 (m, 5H, ArHs); 8.2 (s, 1H, pyrimidine H-4).
16m	IR: 1365 (CH ₃); 2083 (CN). INS: 232 [M ⁺ + 2, 5.0%], 231 [M ⁺ + 1, 15.5%], 230 [M ⁺ , 100.0%], 197[M ⁺ - 5H, 65.7%], 156 [M ⁺ - C_3H_6 S, 31.2%], 65 [31.3%]. ¹ H NMR: 2.4 (m, 2H, CH ₂); 2.75 (s, 3H, CH ₃); 3.15 (t, 2H, CH ₂); 3.4 (t, 2H, CH ₂); 8.5 (s, 1H, pyrimidine H-4).
160	In: 1357.8 (CH ₃); 2214.1 (CN). MS: 246 [M ⁺ + 2, 6.4%], 245 [M ⁺ + 1, 15.5%], 244 [M ⁺ , 100.0%], 211[M ⁺ -SH, 86.2%], 170 [M ⁺ -C ₃ H ₇ S, 48.2%], 143 [-CN, 15.6%], 77[43.7%], 52 [46.4%]. ¹ H NMR: 2.9 (m, 2H, CH ₂); 2.66 (s, 3H, CH ₃); 2.82 (t, 2H, CH ₂); 3.0 (t, 2H, CH ₂); 2.66 (s, 2H, CH ₂); 2.67 (s, 2H, CH ₂); 2.68 (s, 2H, CH ₂); 2.68 (s, 2H, CH ₂); 2.82 (t, 2H, CH ₂); 3.0 (t, 2H, CH
160	(t, 2H, CH ₂); 3.15 (m, 2H, CH ₂); 8.3 (s, 1H, pyrimidine H-4). IR: 3285 (NH) and 1662 (CO). ¹ H NMR: 1.4 (m, 4H, 2CH ₂); 1.8 (m, 4H, 2CH ₂); 2.7 (s, 3H, CH ₃); 2.9 (t, 2H, CH ₂); 3.3 (t, 2H, CH ₂); 8.4 (s, 1H, pyrimidine H-4).

Scheme 5

Experimental

All melting points were determined on an electrothermal apparatus and are uncorrected. IR spectra were recorded (KBr discs) on a Shimadzu FT-IR 8201 PC spectrophotometer. ¹H NMR and spectra were recorded in CDCl3 and (CD3)2SO solutions on a Varian Gemini 300 MHz spectrometer and chemical shifts are expressed in δ units using TMS as an internal reference. Mass spectra were recorded on a GC-MS OP 1000 EX Shimadzu. Elemental analyses were carried out at the Microanalytical Center of the Cairo University. Aminopyrazoles 1a-e were prepared as previously reported.34,35

Synthesis of pyrazolo[1,5-a]pyrimidines (2, 3, 5) a-d General procedure

A mixture of the appropriate aminopyrazoles 1a-e and the appropriate pentane-2,4-dione, 1-phenylbutan-1,3-dione or ethyl-3-oxobutanoate (acetoacetanilide) (5 mmol) in glacial acetic acid (15 ml) were boiled under reflux for 3 h. The resulting solid was collected and recrystallised from appropriate solvent to afford pyrazolo[1,5-a] pyrimidines (2, 3, 5) a-e (Tables 2 and 3).

Synthesis of pyrazolo[1,5-a]pyrimidines 11a-j

Method A: Equimolar amounts of aminopyrazoles 1a-e and α -cyanocinnamonitrile derivatives (0.005 mol) in ethanol (20 ml) containing a catalytically amount of piperidine was heated under reflux for 4 h. The resulting solids were collected and recrystallised from a suitable solvent to give 11a-j.

Method B: A mixture of 1a, malonitrile and benzaldehyde derivatives (0.005 mmol, each) were stirred for 3 h in the presence of ethanol (15 ml) containing catalytical amount of piperidine at room temperature to afford the solid product which collected and recrystallised from a appropriate solvent to afford 11a-j.

Synthesis of pyrazolo[1,5-a]pyrimidine derivatives 16a-o *General* procedure

A mixture of sodium salt 13³⁶⁻⁴¹ (0.01 mole) was refluxed with amino pyrazols 1a-e in a solution of piperidine acetate [piperidine (2.5 ml), water (5 ml) and acetic acid (2 ml)] for 10 minutes, acetic acid (1.5 ml) was added to the above while boiling, then the

mixture was cooled. The resulting solid product was collected and recrystallised from appropriate solvent to give 16a-o.

Received 30 November 2007; accepted 30 January 2008 doi: 10.3184/030823408X287096 Paper 07/4947

References

- 1 T.K. Bradshaw and D.W. Hutchinson, Chem. Soc. Rev., 1977, 6, 43.
- E. Lunt, D.H.R Barton and W.D. Ollis (eds), Comprehensive organic chemistry, Pergamon Press, Oxford, 1984, Vol. 4, p. 493
- 3 D.J. Brown, A.R. Katritzky and C. Rees (eds), Comprehensive heterocyclic chemistry, Pergamon Press, Oxford, 1984, Vol. 3, p. 57
- T. Sasaki, K. Minamoto, T. Suzuki and S. Yamashita, Tetrahedron, 1980, 4 36, 865 (1980)
- 5 D. Prajapati, P.J. Bhuyan and J.S. Sandhu, J. Chem. Soc., Perkin Trans. 1, 1988, 607
- P.J. Bhuyan, H.N. Borah and J.S. Sandhu, J. Chem. Soc., Perkin Trans. 1, 6 1999, 3083
- R. Marumoto and Y. Furukawa, Chem. Pharm. Bull., 1977, 25, 2974.
- 8 H. Griengel, E. Waneck, W. Schwarz, W. Streicher, B. Rosenwirth and E. De. Clercq, J. Med Chem., 1987, 30, 1199.
- 9 E. De. Clercq and R. Bernaertes, J. Biol. Chem., 1987, 262, 14905.
- 10 A.S. Jones, J.R. Sayers, R.T. Walker and E.De. Clercq, J. Med Chem., 1988, 31, 268
- H. Mitsuya, R. Yarchoan and S. Broder, Science, 1990, 249, 1533
- 12
- R. Pontikis and C. Monneret, *Tetrahedron Lett.*, 1994, **35**, 4351. E.Y. Sutcliffe, K.Y. Zee-Cheng, C.C. Cheng and R.K. Robins, *J. Med.* 13 Chem., 1962, 5, 588
- 14 G.B. Elion, S.W. Callahan, H. Nathan, S. Bieber, R.W. Rundles and G.H. Hilching, Biochem. Pharmcol., 1963, 12, 85
- 15 R.W. Rundles, J.W. Wyngarden, G.H. Hilching, G.B. Elion and H.R. Silbermann, Trans. Assoc. Am. Physicians, 1963, 76, 126.
- 16 D.K. Kim, D.H. Ryu, N. Lee, J.Y. Lee, J. Kim, S. Lee, J.Y. Choi, J.H. Ryu, N.H. Kim, G.J. Im, W.S. Choi and T.K. Kim, Bioorg. Med. Chem., 2001, 9, 1895
- 17 E.C. Moore and D. Pharm, J. Pharm. Soc. Wisconsin, 2000, Sep/Oct, 33.
- E. Sanna, F. Busonero, G. Talani, M. Carta, F. Massa, M. Peis, 18 E. Maciocco and G. Biggio, Eur. J. Pharmacol., 2002, 451, 103.
- 19 M. Hurst and S. Noble, CNS Drugs, 1999, 11, 387.
- Zaleplon (Sonata), new drug overview, AHFS Drug Inform., 1999, 28: 20 **24**, 92.

- 21 M. Scharf. Eur Neuropsychopharmacol., 1999, 9, (Suppl 5), 5360.
- 22 M.J.R. Mangano. Eur Neuropsychopharmacol., 1999, 9, (Suppl 5), 5362.
- 23 K.A. Moore, T.L. Zemrus, V. Ramcharitar, B. Levine and D.R. Fowler, Forens. Scie. Int., 2003, 134, 120.
- C.F.P. George, Lancet., 2001, 357, 1623. 24
- J.K. Walsh and C.I. Engelhart, *The direct economic Costs of insomnia in the United States for 1995*, 1999, 22, (Suppl 2), S186.
 I. Eardley, *ExP. Opin. Invert. Drugs*, 1997, 6, 1803.
 L. Garcia-Reboll, J.P. Mulhall and I. Goldstein, *Drugs Aging*, 1997,
- 11, 140.
- 28 M.C. Truss and C.G. Stief, Drugs Today, 1998, 34, 805.
- B. Dumaitre and N. Dodic, J. Med. Chem., 1996, 39, 1635.
 J. Foreman and I. Garland, Br. Med. J., 1976, 1, 820.
- G.H. Elgemeie, S.E. Elezaby, H.A. Ali and A. Mansour, Bull. Chem. Soc. Jpn., 1994, 67, 738. 31
- S.A. Ahmed, A.M. Hussein, W.G.M. Hozayen, A.H.H. El-Ghandour and A.O. Abdelhamid, *J. Heterocyclic Chem.*, 2007, **44**, 803. C.R. Lefert, H. Siripumchidbouree, S. Hamspons, S. Workman, D. Sigee, 32
- 33 H.A.S. Epton and A. Harbour. J. Appl. Bact., 1955, 78, 97.

- 34 G.H. Elgemeie, A.H. Elghandour, A.M. Elzanate abd S.A. Ahmed, J. Chem. Soc. Perkin Trans., 1, 1997, 3285.
- 35 G.H. Elgemeie, A.H. Elghandour, A.M. Elzanate and S.A. Ahmed, J. Chem. Res. (S), 1998, 162.
- 36 V.P. Litvinov, Yu. A. Sharanin, L.A. Rodinov, V.N. Nesterov, V.E. Shkover and Yu. T. Struchkov, Chem. Ser., 1989, 29, 327; Chem. Abstr., 1990, 113, 231238b
- 37 L.A. Rodinovskaya, V.P. Promonenkov, Yu. A. Sharanin, V.I. Shevedor, A.M. Shestopalov and V.P. Litvinov, Zh. Org. Khim., 1985, 21, 1578.
- 38 L.A. Rodinovskaya, V.P. Promonenkov, Yu. A. Sharanin, V.I. Shevedor, A.M. Shestopalov and V.P. Litvinov, Chem. Abstr. 1986, 104, 19530k.
- 39 V.P. Litvinov, E.E. Apenova, Yu. A. Sharanin and A.M. Shestopalov, Akad. Nauk. Sssr, Ser. Khim, 1984, 10, 2408.
- 40 L.A. Rodinovskaya, Yu. A. Sharanin, A.M. Shestopalov and V.P. Litvinov, Khim. Geterotsikl. Soedin, 1988, 6, 805.
- 41 L.A. Rodinovskaya, Yu. A. Sharanin, A.M. Shestopalov and V.P. Litvinov, Chem. Abstr., 1989, 110, 94943x.